Unified explanation for optical and electron paramagnetic resonance spectra of Cr^{3+} ions in LiNbO3 crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys.: Condens. Matter 9529
(http://iopscience.iop.org/0953-8984/9/2/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.207
The article was downloaded on 14/05/2010 at 06:07

Please note that terms and conditions apply.

Unified explanation for optical and electron paramagnetic resonance spectra of $\mathbf{C r}^{3+}$ ions in $\mathbf{L i N b O}_{3}$ crystals

M G Zhao and Y Lei
Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, People’s Republic of China

Received 15 May 1996, in final form 23 August 1996

Abstract

An approximately microscopic model is developed for the $\mathrm{Cr}^{3+}-6 \mathrm{O}^{2-}$ cluster and applied to study the optical data and electron paramagnetic resonance (EPR) g-factors and the zero-field splitting D-value in $\mathrm{LiNbO}_{3}: \mathrm{Cr}^{3+}$. Analysis of the optical and EPR data indicate that Cr^{3+} ions substitute at Nb sites and Nb -vacancy (Li) sites simultaneously. The results are in good agreement with the experimental findings. This means that the optical and EPR data and the substitution site of Cr^{3+} ions in LiNbO_{3} can be interpreted uniformly.

1. Introduction

Renewed interest in the spectroscopy of transition-metal ions in LiNbO_{3} crystals follows from applications in electro-optics and laser technology [1-13]. In the ferroelectric phase, the Li and Nb ions are surrounded by six oxygen atoms in a distorted octahedron and lie along the C_{3} axis but away from the centre of the octahedron. In the [111] direction, the cations are distributed in the octahedron in the following sequence: Nb , structure vacancy, Li, Nb, structure vacancy, Li , etc [13]. In general, Cr^{3+} ions can be situated at either the Li^{+} or the Nb^{5+} site [3]. Earlier, Glass [12] conducted a comparative study of the absorption and fluorescence spectra of $\mathrm{LiNbO}_{3}: \mathrm{Cr}^{3+}$ and concluded that Cr^{3+} substituted at the Nb site and not the Li site. By ENDOR it is shown that the EPR signal is due to Cr^{3+}, which substitutes for Nb [5]. Recently, Cr^{3+} substituted at both Nb and other sites (possibly Li sites) was obtained from axial EPR spectra $[14,15]$ and also from the fluorescence studies of R lines of Cr^{3+} ions [2,10,11]. Martin et al [1] maintained that the main axial EPR spectra and optical spectroscopy arise from the Cr^{3+} ion at the Nb site. However, at the present time there is no satisfactory and quantitative unified explanation for the absorption and fluorescence spectra, and the electron paramagnetic resonance (EPR) g-factors and zerofield splitting D-value of $3 \mathrm{~d}^{3}$ ions in crystals. In this work, we try to develop a quantitative unified explanation for the spectroscopic behaviours and the substitution site of Cr^{3+} ions in $\mathrm{LiNbO}_{3}: \mathrm{Cr}^{3+}$ single crystals. The calculated results agree well with the experimental findings.

2. Invalidity of the high-order perturbation formula for the splitting of the R line

Following the work by Macfarlane [16], the splitting of the R line was given by

$$
\begin{align*}
\delta_{R}=E\left({ }^{2} E,\right. & \left.R_{2}\right)-E\left({ }^{2} E, R_{1}\right)=V \zeta_{d}\left[-4 / 3 D_{7}-16 B / D_{7} D_{13}+4 B / D_{7} D_{12}-16 B / D_{10} D_{12}\right. \\
& \left.+4 B / D_{10} D_{13}\right]+V^{\prime} \zeta_{d}\left[8 \sqrt{2} B / D_{7} D_{12}-2 \sqrt{6} B / D_{7} D_{13}-2 \sqrt{2} B / D_{3} D_{12}\right. \\
& \left.-2 \sqrt{2} B / D_{3} D_{13}\right] \tag{1}
\end{align*}
$$

with

$$
\begin{align*}
& D_{2}=15 B+5 C \quad D_{3}=10 D q+9 B+3 C \\
& D_{7}=10 D q+6 B \quad D_{10}=10 D q \tag{2}\\
& D_{12}=10 D q+14 B+3 C \quad D_{13}=10 D q+5 B .
\end{align*}
$$

Using equations (1) and (2), the following result is obtained:

$$
\begin{equation*}
\delta_{R}=-5.17 \mathrm{~cm}^{-1} \tag{3}
\end{equation*}
$$

when

$$
\begin{array}{lcc}
B=785.7 \mathrm{~cm}^{-1} & C=2839.4 \mathrm{~cm}^{-1} & D q=1445 \mathrm{~cm}^{-1} \\
\zeta_{d}=233.66 \mathrm{~cm}^{-1} & v=25.8 \mathrm{~cm}^{-1} & V^{\prime}=900 \mathrm{~cm}^{-1} \tag{4}
\end{array}
$$

However, using the complete energy matrices with $\mathrm{C}_{3 \mathrm{v}}^{\prime}$ symmetry [16] and exactly diagonalizing them, we obtain

$$
\begin{equation*}
\delta_{R}=-35 \mathrm{~cm}^{-1} \tag{5}
\end{equation*}
$$

This means that the high-order perturbation formula for δ_{R} is inadequate. Thus the previous calculation [12] is questionable because an unreasonable approximation was used in the calculation.

3. Complete diagonalization procedure for $\mathbf{3 d}^{\mathbf{3}}$ and $\mathbf{3 d}^{7}$ ions in the $\mathbf{C}_{\mathbf{3 v}}$ symmetry field

The Hamiltonian including the electron-electron repulsions, the spin-orbit interactions and the crystal-field interactions is given by

$$
\begin{equation*}
H=H_{e}+H_{s o}+H_{c f} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{e}=\sum_{i}\left(\frac{-\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{z e^{2}}{r_{i}}\right)+\sum_{i>j} \frac{e^{2}}{r_{i j}} \tag{7}\\
& H_{s o}=\sum_{i} \zeta_{d} S(i) \cdot L(i) \tag{8}\\
& H_{c f}=\sum_{k, q, i} B_{k q} C_{q}^{(k)}(i) \tag{9}
\end{align*}
$$

The $B_{k q}$ appearing in equation (9) are the crystal-field parameters and $C_{q}^{(k)}$ is the tensor harmonics. All other symbols appearing in equations (7) and (8) have their usual meanings.

In the intermediate-field coupling case, $H_{e}+H_{c f}$ is applied before the spin-orbit interactions. The matrix (120×120) for the combined Coulomb, crystal-field and spin-orbit interactions may be computer-generated similar to the earlier work [16-21].

In order to analyse the EPR spectrum the spin Hamiltonian (SH) for the axial symmetry case about a threefold axis was used. This was given by [22]

$$
\begin{equation*}
H_{s}=\beta\left(g_{\|} H_{z} S_{z}+g_{\perp} H_{x} S_{x}+g_{\perp} H_{y} S_{y}\right)+D S_{z}^{2} \tag{10}
\end{equation*}
$$

The symbols appearing in equation (10) have their usual meanings.

The coordinate system is chosen such that the z axis coincides with the symmetric axis C_{3}. The SH matrix elements are calculated in terms of the effective spin vectors. The spin ground state of the $3 \mathrm{~d}^{3}$ configuration in crystal is the admixture of $S=3 / 2$ and $1 / 2$ spin states. In the effective SH formalism, the 'spin' is described by an effective spin s^{\prime}.

By means of the approximate equivalence between the SH and complete diagonalization procedure (CDP), the following expressions are obtained:
$2 D=E(\pm 3 / 2)(\mathrm{CDP})-E(\pm 1 / 2)(\mathrm{CDP}) \quad(H=0)$
$g_{\|}=\langle 3 / 2,1 / 2| k L_{z}+2.0023 S_{z}|3 / 2,1 / 2\rangle-\langle 3 / 2,-1 / 2| k L_{z}+2.0023 S_{z}|3 / 2,-1 / 2\rangle$
$g_{\|}=(1 / 3)\left[\langle 3 / 2,3 / 2| k L_{z}+2.0023 S_{z}|3 / 2,3 / 2\rangle-\langle 3 / 2,-3 / 2| k L_{z}+2.0023 S_{z}|3 / 2,-3 / 2\rangle\right]$
$g_{\perp}=\frac{2}{\sqrt{3}}\langle 3 / 2,3 / 2| k L_{x}+2.0023 S_{x}|3 / 2,1 / 2\rangle$
$g_{\perp}=\langle 3 / 2,1 / 2| k L_{x}+2.0023 S_{x}|3 / 2,-1 / 2\rangle$.
Here $E(3 / 2, \pm 3 / 2)$ and $E(3 / 2, \pm 1 / 2)$ denote the zero-field $(\boldsymbol{H}=\mathbf{0})$ eigenenergies of eigenstates $|3 / 2, \pm 3 / 2\rangle(\mathrm{CDP})$ and $|3 / 2, \pm 1 / 2\rangle(\mathrm{CDP})$, respectively, k is the orbit reduction factor and $k \boldsymbol{L}+2.0023 \boldsymbol{S}$ is the Zeeman magnetic moment operator; its matrices (120×120) may be computer generated; $k \boldsymbol{L}+2.0023 S=\sum_{i}[k \boldsymbol{L}(i)+2.0023 S(i)]$.

4. An approximately equivalent self-consistent-field molecular orbital model for $\mathbf{C r}^{\mathbf{3 +}}$ ions in crystals

In the generalized crystal-field-like model, the $\mathrm{C}_{3 \mathrm{v}}$ crystal-field parameters $B_{k q}$ were given by $[20,21]$
$B_{20}=-3 e^{2}\left\langle r^{2}\right\rangle \sum_{i=1}^{2} \frac{3 \cos ^{2} \theta_{i}-1}{R_{i}^{3}}$
$B_{40}=\frac{-3 e^{2}\left\langle r^{4}\right\rangle}{4} \sum_{i=1}^{2} \frac{35 \cos ^{4} \theta_{i}-30 \cos ^{2} \theta_{i}+3}{R_{i}^{5}}$
$\left.B_{43}=-B_{4-3}=\left[(\sqrt{35}) 3 e^{2}\left\langle r^{4}\right\rangle / 2\right]\left[\sin ^{3} \theta_{2} \cos \theta_{2} / R_{2}^{5}\right)-\left(\sin ^{3} \theta_{1} \cos \theta_{1} / R_{1}^{5}\right)\right]$
where the effective charge equals the valence charge which is $2 e$ for O^{2-} ligands. The crystal-field parameters $B_{k q}$ can be calculated from the structure data provided that the expectation values $\left\langle r^{n}\right\rangle$ are known. Consideration of the overlap between the central metal ion and the ligand orbitals, a reasonable approximation for the electrostatic parameters B and C, the spin-orbit constant ζ_{d}, the expectation values $\left\langle r^{n}\right\rangle$ and the orbit reduction factor k in crystal was made [20,21]:

$$
\begin{array}{lll}
B=N^{4} B_{0} & C=N^{4} C_{0} & \\
\zeta_{d}=N^{2} \zeta_{d}^{0} & \left\langle r^{n}\right\rangle=N^{2}\left\langle r^{n}\right\rangle_{0} & K=N^{2} \tag{17}
\end{array}
$$

where N is the average reduction factor due to the covalency, B_{0} and C_{0} are the electrostatic parameters, ζ_{d}^{0} is the spin-orbit coupling constant and $\left\langle r^{n}\right\rangle_{0}$ is the expectation value of r^{n} in the free-ion state. As one can see, this model leaves at most one model parameter N, which remains to be determined from an experimentally or theoretically known energy level [20, 21].

For the Cr^{3+} ion, the parametrized d orbital is given by
$R_{d}(r)=0.5981\left(\frac{\left(2 \zeta_{1}\right)^{7}}{6!}\right)^{1 / 2} r^{2} \exp \left(-\frac{\zeta_{1} r}{a_{0}}\right)+0.6000\left(\frac{\left(2 \zeta_{2}\right)^{7}}{6!}\right)^{1 / 2} r^{2} \exp \left(-\frac{\zeta_{2} r}{a_{0}}\right)$
(the Bohr radius $a_{0}=0.52918 \AA=1 \mathrm{au} ; \zeta_{1}$ and ζ_{2} are Slater exponents) where $\zeta_{1}=4.739811418$ and $\zeta_{2}=1.648630058$.

From equation (18), we find that

$$
\begin{align*}
& \left.B_{0}=927 \mathrm{~cm}^{-1} \text { (observed, } 927 \mathrm{~cm}^{-1} ; \text { SCF, } 808 \mathrm{~cm}^{-1}[24]\right) \\
& C_{0}=3350 \mathrm{~cm}^{-1}\left(\text { observed, } 3350 \mathrm{~cm}^{-1} ; \text { SCF, } 3336 \mathrm{~cm}^{-1}[24]\right) \\
& \zeta_{d}^{0}=253.8 \mathrm{~cm}^{-1}\left(\text { observed, } 270 \mathrm{~cm}^{-1} ; \text { SCF, } 273 \mathrm{~cm}^{-1}[22]\right) \tag{19}\\
& \left\langle r^{2}\right\rangle_{0}=2.46395 a_{0}^{2} \\
& \left\langle r^{4}\right\rangle_{0}=16.4276 a_{0}^{4} .
\end{align*}
$$

The comparison of theory with experiment is shown in table 1.

Table 1. Spectrum of free Cr^{3+} ion.

Term	J	Energy levels (cm^{-1})	
		Theoretical value ${ }^{\text {c }}$	Experimental value ${ }^{\text {a,b }}$
${ }^{4} \mathrm{~F}$	3/2	0	$0^{\text {a }}$
	5/2	219	$235.8{ }^{\text {a }}$
	7/2	518.3	$555.6{ }^{\text {a }}$
	9/2	891.3	$945.6{ }^{\text {a }}$
${ }^{4} \mathrm{P}$	1/2	13544	$14059^{\text {a }}, 13640^{\text {b }}$
	3/2	13638	$14177.1^{\text {a }}$
	5/2	13895	$14471.3^{\text {a }}$
${ }^{2} \mathrm{G}$	7/2	14871	$15051.8^{\text {a }}$, $14660^{\text {b }}$
	9/2	15191	$15401.6^{\text {a }}$
${ }^{2} \mathrm{P}$	3/2	18378	$19438.6^{\text {a }}$, $18400^{\text {b }}$
	1/2	18499	$19519.2^{\text {a }}$
${ }^{2} \mathrm{D}_{2}$	3/2	20229	$20649.9^{\text {a }}$, $19930^{\text {b }}$
	5/2	20278	$20664.3^{\text {a }}$
${ }^{2} \mathrm{H}$	9/2	20473	$21065.9^{\text {a }}, 20590^{\text {b }}$
	11/2	20500	$21320.7^{\text {a }}$
${ }^{2} \mathrm{~F}$	7/2	33022	$34262.8^{\text {a }}$
	5/2	33160	$34555.7^{\text {a }}$
${ }^{2} \mathrm{D}_{1}$	5/2	50974	$52975.3^{\text {a }}$
	$3 / 2$	51143	$53152.0^{\text {a }}$

${ }^{\text {a }}$ From [25].
${ }^{\text {b }}$ From [26].
${ }^{\text {c }}$ Trees correction constant $\alpha_{0}=65 \mathrm{~cm}^{-1}$; Racah correction constant $\beta_{0}=-131 \mathrm{~cm}^{-1}$.

We shall show in section 5 that our parametrized crystal-field-like model is approximately equivalent to the $\mathrm{SCF} \mathrm{DV}-\mathrm{X}_{\alpha}$ method for Cr^{3+} ions in LiNbO_{3}.

5. Calculations and results

Since the $\mathrm{Nb}^{5+}-\mathrm{O}^{2-}$ bond is stronger than the $\mathrm{Li}^{+}-\mathrm{O}^{2-}$ bond, LiNbO_{3} crystals have a tendency to non-stoichiometry with $[\mathrm{Li}] /[\mathrm{Nb}]<1$. Such crystals therefore have a very

Figure 1. Distorted structure of Cr^{3+} site in $\mathrm{LiNbO}_{3}: \bullet, \mathrm{Nb}^{5+} / \mathrm{Li}^{+} ; \oplus, \mathrm{Cr}^{3+} ; \otimes, \mathrm{O} ; \mathrm{O}$, shifted O.
high concentration of intrinsic defects. O'Bryan et al [27] reported the composition ratio to be 48.45/51.55. Abraham and Marsh [28] reinvestigated the composition of LiNbO_{3}. The crystal structure was found to be given by $\left[\mathrm{Li}_{1-5 x} \mathrm{Nb}_{5 x}\right] \mathrm{Nb}_{1-x} \mathrm{O}_{3}$ with $x=0.0118$, indicating that there are 5.9% vacant Li sites. So, we believe that firstly there are two kinds of Nb site, namely the regular sites $\mathrm{Nb}(\mathrm{I})$, and the unusual sites Nb (II) perturbed by a close Li^{+}vacancy, and secondly Cr^{3+} ions substitute for both Nb^{5+} (I) ions and Nb^{5+} (II) ions in the trigonally relaxed octahedral sites; this leads to two types of R line: $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)\left(\mathrm{Cr}^{3+}(\mathrm{I})\right)$ and $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)\left(\mathrm{Cr}^{3+}(\mathrm{II})\right)$ lines $[2,10,11]$.

Following the experimental work by Abraham et al [13,28, 29] and Glass [12], to within the range of experimental errors ($\Delta R_{i}= \pm 0.01 \AA ; \Delta \theta_{i}= \pm 1^{\circ}$), the structure data of Li^{+}and Nb^{5+} sites in the host LiNbO_{3} crystal may be taken as, for the Li^{+}site $\left(\mathrm{C}_{3 \mathrm{v}}\right.$ approximation),

$$
\begin{array}{lr}
R_{1}^{0}=2.238 \AA & R_{2}^{0}=2.068 \AA \\
\theta_{1}=44.57^{\circ} & \theta_{2}=110.26^{\circ} \tag{20}
\end{array}
$$

and, for the Nb^{5+} site ($\mathrm{C}_{3 \mathrm{v}}$ approximation),

$$
\begin{array}{ll}
R_{1}^{0}=1.889 \AA & R_{2}^{0}=2.112 \AA \tag{21}\\
\theta_{1}=61.65^{\circ} & \theta_{2}=133^{\circ} .
\end{array}
$$

Taking into account the local relaxation around the Cr^{3+} site as depicted in figure 1 , we define

$$
\begin{align*}
& f=R_{i} / R_{i}^{0} \quad(i=1,2) \\
& \Delta Z=Z\left(\mathrm{Cr}^{3+}\right)-Z(\mathrm{Nb} / \mathrm{Li}) \tag{22}
\end{align*}
$$

where f denotes the relaxation factor of the bond lengths, ΔZ is the relaxation displacement along the C_{3} axis, R_{i} are relaxed bond lengths, R_{i}^{0} are the unrelaxed bond lengths, $Z\left(\mathrm{Cr}^{3+}\right)$ is the relaxed Z coordinate of the Cr^{3+} ion and $Z(\mathrm{Nb} / \mathrm{Li})$ is the Z coordinate of the $\mathrm{Nb} / \mathrm{Li}$ ion.

The values of ΔZ and f are dependent on both the crystal growth conditions and the doping levels of $\mathrm{LiNbO}_{3}: \mathrm{Cr}^{3+}$.

Recently, Qiu [37] calculated the electronic structure of Cr^{3+} ions in LiNbO_{3} with the DV $-X_{\alpha}$ method and found that the average transition energies of the ${ }^{2} \mathrm{E}(\mathrm{G})$ state for Cr^{3+} ions at Nb and Li sites in LiNbO_{3} are $13836 \mathrm{~cm}^{-1}$ and $13805 \mathrm{~cm}^{-1}$, respectively. By means of the approximate average equivalence between the $\mathrm{DV}-\mathrm{X}_{\alpha}$ calculation and our generalized crystal-field model, one obtains $N=0.9595$ for the Nb site, and $N=0.9658$ for the Li site.

Utilizing equations (14)-(22) we obtain the crystal-field parameter $B_{k q}$ as a function of f and ΔZ. By diagonalizing the 120×120 matrix and utilizing the equations (11)-(13), we obtain the crystal-field energy levels and EPR g-factor and D-value. The final results are shown in tables 2-4. Comparing the theoretical d-d transitions and EPR parameters with the experimental values, it can be seen that good agreement between theory and experiments is obtained, as the Cr^{3+} ion substitutes for both $\mathrm{Nb}^{5+}(\mathrm{I})$ and Nb^{5+} (II). It can also be seen from table 4 that the experimental EPR and optical spectra cannot be reproduced by placing the Cr^{3+} ion at the Li position.

6. Discussion and conclusion

(a) This, to our knowledge, is the first attempt at a unified explanation for optical and EPR data, and the substitution site of Cr^{3+} ions in LiNbO_{3} crystals. The good agreement between theory and experiments shows that the method and model are reasonable. In this scheme, there is no adjustable model parameter since the parameter N has been obtained equivalently from the $\mathrm{SCF} \mathrm{DV}-\mathrm{X}_{\alpha}$ calculation.
(b) It is well known that the $\mathrm{Cr}-\mathrm{O}$ bond lengths and bond angles may differ from the host cation-anion values. In concentrated ruby, for instance, the Cr^{3+} ion has been found to be displaced from the host Al^{3+} ion site by $0.06 \AA$ [31]. It is currently accepted that for impurities in solids the bond lengths R_{i} can be determined through the EXAFS technique. It may be applied to any kind of impurity. However, impurity concentrations of the order of 100 ppm may be difficult to see by EXAFS [30], while concentrations of the order of 1 ppm of some transition-metal ions can be detected through EPR. In addition, the bond lengths of transition-metal ions in crystals can also be determined from superhyperfine splitting (SHF) measurements [32,34]. So, the values of ΔZ and f obtained for Cr^{3+} ions at Nb sites may be further compared by other methods (for instance EXAFS, ENDOR and SHF). In view of the good and systematic agreement between the theory and the optical and EPR experiments, the results are reasonable and safe [38]. (The slight discrepancies in

Table 2. Comparison between theory and experiments.

${ }^{a}$ The Trees and Racah corrections were neglected.
the experimental D-values may be due to the different crystal growth conditions of LiNbO_{3} or the fitting procedure used.)

Table 3. Comparison between theory and experiments.

${ }^{a}$ The Trees and Racah corrections were neglected.
(c) Qiu [37] has calculated five d-d transition energies for Cr^{3+} ions in LiNbO_{3} with the $\mathrm{DV}-\mathrm{X}_{\alpha}$ method. He deduced a value of $-817 \mathrm{~cm}^{-1}$ for the ${ }^{4} \mathrm{~T}_{2}$ splitting Δ_{T} at the Nb site,

Table 4. Comparison between theory and experiments.

which is essentially different from those of $267-331 \mathrm{~cm}^{-1}$ obtained by us (observed, 180$360 \mathrm{~cm}^{-1}$). So, the so-called approximate equivalence between the generalized crystal-fieldlike model and the $\mathrm{DV}-\mathrm{X}_{\alpha}$ calculation is only an average energy equivalence instead of total equivalence. In addition, to our knowledge, the X_{α} calculation cannot quantitatively explain the EPR parameters $D, g_{\|}$and g_{\perp}. Furthermore, it should be pointed out that we have obtained an average value of $13904 \mathrm{~cm}^{-1}$ for the ${ }^{4} \mathrm{~T}_{2}$ state of Cr^{3+} in the unrelaxed

Nb site $(\Delta Z=0 ; f=1)$ in LiNbO_{3}, using $N=0.9595$, which is in good agreement with the $\mathrm{DV}-\mathrm{X}_{\alpha}$-value of $14019 \mathrm{~cm}^{-1}$ [37]. It shows that $\left\langle r^{4}\right\rangle_{0}=16.4276 \mathrm{au}$ is equivalently consistent with the MO calculation.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (grant 19574036).

References

[1] Martin A, Lopez F J and Agullo-Lopez F 1992 J. Phys.: Condens. Matter 4847
[2] Jia W, Liu H, Knutson R and Yen W M 1990 Phys. Rev. B 4110906
[3] Evlanova N F, Kornienko L S, Rashkovich L N and Rybaltovskii A O 1968 Sov. Phys.-JETP 261090
[4] Grachev V G, Malovichko G I and Troitskii V V 1987 Sov. Phys.-Solid State 29349
[5] Schirmer O F, Thiomana O and Wohlecke M 1991 J. Phys. Chem. Solids 52185
[6] Siu G G and Zhao M G 1991 Phys. Rev. B 4313575
[7] Zhong G, Jian J and Wu Z 1980 Proc. 11th Int. Quantum Electronic Conf. (New York: IEEE) p 361
[8] Kovcas L, Foldvari I, Gravero I and Polgar K 1988 Phys. Lett. 133A 433
[9] Lifante G, Cusso F, Sanz-Garcia J A, Monteil A, Varrel B, Boulon G and Carcia J 1991 Chem. Phys. Lett. 176482
[10] Camarillo E, Tocho J, Vergara I, Diegues E, Carcia-Sole J and Jaque F 1992 Phys. Rev. B 454600
[11] Camanillo E, Carcia-Sole J, Cusso F, Agullo-Lopez F, Sanz-Carcia J A, Han T P J, Jaque F H and Henderson B 1991 Chem. Phys. Lett. 185505
[12] Glass A M 1969 J. Chem. Phys. 501501
[13] Abraham S C, Reddy J M and Bernstein J L 1966 J. Phys. Chem. Solids 27997
[14] Rexford D G, Kim Y M and Story H S 1970 J. Chem. Phys. 52860
[15] Park I W, Choh S H, Song K J and Kim J N 1993 J. Korean Phys. Soc. 26122
[16] Macfarlane R M 1970 Phys. Rev. B 1 988; 1963 J. Chem. Phys. 393118
[17] Konig E and Schnakig R 1976 Phys. Status Solidi b 77657
[18] Konig E and Kremer S 1977 Ligand Field Energy Diagrams (New York: Plenum)
[19] Febbraro S 1987 J. Phys. C: Solid State Phys. 205367
[20] Zhao M G and Chiu M 1994 Phys. Rev. B 4912556
[21] Zhao M G and Chiu M 1995 Phys. Rev. B 5210043
[22] Abragam A and Bleaney B 1970 Electron paramagnetic Resonance of Transition Metal Ions (Oxford: Clarendon)
[23] Rosseinski D R and Dorrity I A 1978 Coord. Chem. Rev. 2531
[24] Van Der Laan G 1991 J. Phys.: Condens. Matter 37443
[25] Ekberg O 1973 Phys. Scr. 755
[26] Moore C E 1952 Atomic Energy Levels NBS Circular 467 (Washington, DC: US Government Printing Office)
[27] O'Bryan H M, Gallagher P K and Brandle C D 1985 J. Am. Ceram. Soc. 68493
[28] Abraham S C and Marsh P 1986 Acta Crystallogr. B 4261
[29] Abraham S C, Hamilton W C and Reddy J M 1966 J. Phys. Chem. Solids 271013
[30] Carcia A, Bianconi M and Natoli C R 1986 J. Physique 47 C8-49
[31] Moss S C and Newnham R E 1964 Z. Kristallogr. 120359
[32] Barriuso M T and Moreno M 1982 Phys. Rev. B 292271
[33] Moreno M 1990 J. Phys. Chem. Solids 51835
[34] Moreno M, Arambura J A and Barriuso M T 1982 Phys. Lett. 87A 307
[35] Henry M O, Larkin J P and Imbusch G F 1975 Proc. R. Irish Acad. 7597
[36] The transitions ${ }^{4} \mathrm{~A}_{2} \rightarrow{ }^{2} \mathrm{E}$ are magnetic dipoles since the intensity ratio is $I\left(\mathrm{R}_{1}\right): I\left(\mathrm{R}_{2}\right) \approx 4: 3$ instead of 3:1 [35]
[37] Qiu Y 1993 J. Phys.: Condens. Matter 52041
[38] It must be pointed out that there is an error in the calculation by Yu and Zhao [39] because D (observed) is $(-199 \pm 7) \times 10^{-4} \mathrm{~cm}^{-1}$ instead of $(34.5 \pm 5) \times 10^{-4} \mathrm{~cm}^{-1}$ [17,40]. Adopting the CDP [21], we have obtained the bond length values of $R_{\|}=2.09 \AA$ and $R_{\square}=2.13 \AA$ for MnF_{2}, which are consistent with the structure data obtained by Baur [41] ($R_{\|}=2.10 \pm 0.01 \AA ; R_{\square}=2.13 \pm 0.02 \AA$), which again supports the determination of the bond lengths through the optical and EPR measurements.
[39] Yu W L and Zhao M G 1987 J. Phys. C: Solid State Phys. 18 L1087
[40] Tinkham M 1956 Proc. R. Soc. A 236535
[41] Baur H W 1958 Acta Crystallogr. 11488

